Research studies

Rigidity of Composition Operators with Sum of Symbols on the Hardy Space H^(1+ϵ)

 

Prepared by the researche : Dr. BUSHARA EISA HAHAD ABDALLA – Assistant of Professor Mathematics, Department of Mathematics, –  White Nile University, Kosti, Sudan

Democratic Arabic Center

Journal of Afro-Asian Studies : Twenty-First Issue – May 2024

A Periodical International Journal published by the “Democratic Arab Center” Germany – Berlin

Nationales ISSN-Zentrum für Deutschland
ISSN  2628-6475
Journal of Afro-Asian Studies

:To download the pdf version of the research papers, please visit the following link

https://democraticac.de/wp-content/uploads/2024/04/Journal-of-Afro-Asian-Studies-Twenty-First-Issue-%E2%80%93-May-2024.pdf

Abstract

Given (φ_1+φ_2) be sum of analytic maps taking the unit disk D into itself. We show follow [40] and establish that the class of composition operators f→ C_((φ_1+φ_2)) (f)= f∘(φ_1+φ_2) exhibits a rather strong rigidity of non-compact behaviour on the Hardy space H^(1+ϵ), for 0≤ϵ<∞ and ϵ≠1. The main result states that exactly one of the following alternatives holds: (i) C_((φ_1+φ_2)) is a compact operator H^(1+ϵ) → H^(1+ϵ), (ii) C_((φ_1+φ_2)) fixes a copy of 1+ϵ in H^(1+ϵ), but C_((φ_1+φ_2)) does not fix any copies of 2 in H^(1+ϵ), (iii) C_((φ_1+φ_2)) fixes a copy of 2 in H^(1+ϵ). In case (iii) the operator C_((φ_1+φ_2)) actually fixes a copy of L^(1+ϵ) (0,1) in H^(1+ϵ) provided ϵ>0. We reinterpret these results in terms of norm-closed ideals of the bounded linear operators on H^(1+ϵ), which contain the compact operators (1+ϵ)(H^(1+ϵ)). The class of composition operators on H^(1+ϵ) does not reflect the quite complicated lattice structure of such ideals.
Keywords: Hardy space, Composition operator, l^(1+ϵ)-singularity, l^2-singularity

5/5 - (2 صوتين)

المركز الديمقراطى العربى

المركز الديمقراطي العربي مؤسسة مستقلة تعمل فى اطار البحث العلمى والتحليلى فى القضايا الاستراتيجية والسياسية والاقتصادية، ويهدف بشكل اساسى الى دراسة القضايا العربية وانماط التفاعل بين الدول العربية حكومات وشعوبا ومنظمات غير حكومية.

مقالات ذات صلة

زر الذهاب إلى الأعلى